Slow oscillations in blood pressure via a nonlinear feedback model.
نویسندگان
چکیده
Blood pressure is well established to contain a potential oscillation between 0.1 and 0.4 Hz, which is proposed to reflect resonant feedback in the baroreflex loop. A linear feedback model, comprising delay and lag terms for the vasculature, and a linear proportional derivative controller have been proposed to account for the 0.4-Hz oscillation in blood pressure in rats. However, although this model can produce oscillations at the required frequency, some strict relationships between the controller and vasculature parameters must be true for the oscillations to be stable. We developed a nonlinear model, containing an amplitude-limiting nonlinearity that allows for similar oscillations under a very mild set of assumptions. Models constructed from arterial pressure and sympathetic nerve activity recordings obtained from conscious rabbits under resting conditions suggest that the nonlinearity in the feedback loop is not contained within the vasculature, but rather is confined to the central nervous system. The advantage of the model is that it provides for sustained stable oscillations under a wide variety of situations even where gain at various points along the feedback loop may be altered, a situation that is not possible with a linear feedback model. Our model shows how variations in some of the nonlinearity characteristics can account for growth or decay in the oscillations and situations where the oscillations can disappear altogether. Such variations are shown to accord well with observed experimental data. Additionally, using a nonlinear feedback model, it is straightforward to show that the variation in frequency of the oscillations in blood pressure in rats (0.4 Hz), rabbits (0.3 Hz), and humans (0.1 Hz) is primarily due to scaling effects of conduction times between species.
منابع مشابه
Interactions of TGF-dependent and myogenic oscillations in tubular pressure.
We have previously shown that there are two oscillating components in spontaneously fluctuating single-nephron blood flow obtained from Sprague-Dawley rats (Yip K-P, Holstein-Rathlou NH, and Marsh DJ. Am J Physiol Renal Physiol 264: F427-F434, 1993). The slow oscillation (20-30 mHz) is mediated by tubuloglomerular feedback (TGF), whereas the fast oscillation (100 mHz) is probably related to spo...
متن کاملStability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay
In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...
متن کاملBimodal oscillations in nephron autoregulation.
The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular feedback. We investigate the intra- and internephron entrainment of the two time scales. In addition...
متن کاملModelling Heart Rate Variability Due to Respiration and Baroreeex
This chapter is devoted to the interactions of heart beat, respiration, and blood pressure oscillations. A nonlinear model is derived which describes the essential parts of the baroreceptor loop: blood pressure wave, baroreceptor activity, cardio-respiratory center, and regulation of heart rate and vascular resistance via the autonomic nerves. Special attention is devoted to the phase response ...
متن کاملApplication of a Direct Model Reference Adaptive Controller (DMRAC) in a Nonlinear Cardiovascular Model
The objective of this study is to design a robust direct model reference adaptive controller (DMRAC) for a nonlinear cardiovascular model over a range of plant parameters representing a variety of physical conditions. The direct adaptive controllers used in thisd study require the plant to be almost strictly positive real (ASPR) that is, for a plant to be controlled there must exist a feedback ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 280 4 شماره
صفحات -
تاریخ انتشار 2001